Classical two - phase Stefan problem for spheres
نویسندگان
چکیده
The classical Stefan problem for freezing (or melting) a sphere is usually treated by assuming that the sphere is initially at the fusion temperature, so that heat flows in one phase only. Even in this idealized case there is no (known) exact solution, and the only way to obtain meaningful results is through numerical or approximate means. In this study, the full two-phase problem is considered, and in particular, attention is given to the large Stefan number limit. By applying the method of matched asymptotic expansions, the temperature in both the phases is shown to depend algebraically on the inverse Stefan number on the first time scale, but at later times the two phases essentially decouple, with the inner core contributing only exponentially small terms to the location of the solid– melt interface. This analysis is complemented by applying a small-time perturbation scheme and by presenting numerical results calculated using an enthalpy method. The limits of zero Stefan number and slow diffusion in the inner core are also noted.
منابع مشابه
Development of a phase change model for volume-of-fluid method in OpenFOAM
In this present study, volume of fluid method in OpenFOAM open source CFD package will be extended to consider phase change phenomena with modified model due to condensation and boiling processes. This model is suitable for the case in which both unsaturated phase and saturated phase are present and for beginning boiling and condensation process needn't initial interface. Both phases (liquid-va...
متن کاملNonlinear Two-Phase Stefan Problem
In this paper we consider a nonlinear two-phase Stefan problem in one-dimensional space. The problem is mapped into a nonlinear Volterra integral equation for the free boundary.
متن کاملNewton-Product integration for a Two-phase Stefan problem with Kinetics
We reduce the two phase Stefan problem with kinetic to a system of nonlinear Volterra integral equations of second kind and apply Newton's method to linearize it. We found product integration solution of the linear form. Sufficient conditions for convergence of the numerical method are given and their applicability is illustrated with an example.
متن کاملAn Algorithm based on Predicting the Interface in Phase Change Materials
Phase change materials are substances that absorb and release thermal energy during the process of melting and freezing. This characteristic makes phase change material (PCM) a favourite choice to integrate it in buildings. Stephan problem including melting and solidification in PMC materials is an practical problem in many engineering processes. The position of the moving boundary, its veloci...
متن کاملA study of a Stefan problem governed with space–time fractional derivatives
This paper presents a fractional mathematical model of a one-dimensional phase-change problem (Stefan problem) with a variable latent-heat (a power function of position). This model includes space–time fractional derivatives in the Caputo sense and time-dependent surface-heat flux. An approximate solution of this model is obtained by using the optimal homotopy asymptotic method to find the solu...
متن کامل